145. Binary Tree Postorder Traversal
Binary Tree Postorder Traversal
Given the
root
of a binary tree, return the postorder traversal of its nodes' values.
Example 1:

Input: root = [1,null,2,3]
Output: [3,2,1]
Example 2:
Input: root = [] Output: []
Example 3:
Input: root = [1] Output: [1]
Constraints:
- The number of the nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
Follow up: Recursive solution is trivial, could you do it iteratively?
Approach) Use two stacks
- Push the root to the first stack.
- Loop while the first stack is not empty
- Pop a node from the first stack and push it to the second stack(res[])
- Push left and right children of the popped node to the first stack
- Pop all elements from second stack(res.reverse())
Code:
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var postorderTraversal = function(root) {
let res = []; // use res as another stack
// empty tree case:
if (root === null) return res;
let stack = [];
// postorder visit: left, right, root
stack.push(root);
while (stack.length !== 0) {
let cur = stack.pop();
// treat it as stack, store them in reverse order:
// i.e root, left, right
res.push(cur.val);
if (cur.left) stack.push(cur.left);
if (cur.right) stack.push(cur.right);
}
// we can pop all elements one by one, or just reverse them
return res.reverse();
};
Approach) Recursion
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var postorderTraversal = function (root) {
const ans = [];
postorder(root);
return ans;
function postorder(root) {
if (root === null) {
return;
}
postorder(root.left);
postorder(root.right);
ans.push(root.val);
}
}
Complexity
Time ComplexityTime complexity will be O(n).
Space Complexity
space complexity should also be O(n).
Approach) Iterative — Using 1 stack
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var postorderTraversal = function (root) {
const ans = [];
const stack = [];
let node = root;
let times = 1;
while (node !== null || stack.length !== 0) {
while (node !== null) {
stack.push([node, 1]);
node = node.left;
}
[node, times] = stack.pop();
if (times === 2) {
ans.push(node.val);
node = null;
} else {
stack.push([node, 2]);
node = node.right;
}
}
return ans;
};
Complexity
Time ComplexityTime complexity will be O(n).
Space Complexity
space complexity should also be O(n).
Conclusion
That’s all folks! In this post, we solved LeetCode problem #145. Binary Tree Postorder Traversal
I hope you have enjoyed this post. Feel free to share your thoughts on this.
You can find the complete source code on my GitHub repository. If you like what you learn. feel free to fork 🔪 and star ⭐ it.
In this blog, I have tried to collect & present the most important points to consider when improving Data structure and logic, feel free to add, edit, comment, or ask. For more information please reach me here
Happy coding!
Comments
Post a Comment